Quantum Processes in a Two-Mode Laser Field
نویسندگان
چکیده
Abstract—The probabilities of the emission of a photon by an electron and e+e–-pair photoproduction in a field which is a superposition of two electromagnetic plane waves with different frequencies and propagating in the same direction are obtained. The case where the frequencies of the two modes are commensurate is studied in detail. This case is interesting primarily because of the existence of effects due to the interference of amplitudes, corresponding to a different number of photons absorbed from different modes but having the same total 4-momentum. It is shown that the optimal field for observing interference effects is a field such that the ratio of the mode frequencies is 3. The probabilities of radiation and pair-photoproduction processes in the field of a monochromatic plane wave and in a two-mode field, obtained by splitting the initial wave into two waves, are compared. It is shown that the total probability of the emission of a photon by an electron in a two-mode field is lower than and the probability of pair photoproduction is higher than the probabilities of the same processes in the initial wave. The increase in the pair-photoproduction probability is explained by the fact that additional channels for reactions which are forbidden in the initial monochromatic field open up in a two-mode field. © 2000 MAIK “Nauka/Interperiodica”.
منابع مشابه
LASERS WITHOUT INVERSION: DENSITY OPERATOR METHOD
A quantum theory of a two and three-level laser with injected atomic coherence is developed by using a density operator method, to the best of our knowledge, for the first time. The initial atomic coherence plays an essential role. At steady state, the equation of motion for the density operator yields to exhibit laser without inversion and a phase locking but no threshold for the laser fie...
متن کاملDynamical evolution of nonclassical properties in cavity quantum electrodynamics with a single trapped ion
In this paper, by considering a system consisting of a single two-level trapped ion interacting with a single-mode quantized radiation field inside a lossless cavity, the temporal evolution of the ionic and the cavity-field quantum statistical properties including photon-counting statistics, quantum fluctuations of the field quadratures and quantum fluctuations of the ionic dipole variables are...
متن کاملThe Impact of the Spectral Filter Bandwidth on the Spectral Entanglement and Indistinguishability of Photon Pairs of SPDC Process
In this paper, we have investigated the dependence of the spectral entanglement and indistinguishability of photon pairs produced by the spontaneous parametric down-conversion (SPDC) procedure on the bandwidth of spectral filters used in the detection setup. The SPDC is a three-wave mixing process which occurs in a nonlinear crystal and generates entangled photon pairs and utilizes as one of th...
متن کاملAnalysis of Steady-State Brillouin Nonlinearity in High-Power Fiber Lasers
In the present work, a theoretical analysis of the first-order of stimulatedBrillouin scattering (SBS) in a double-clad (DC) ytterbium (Yb)-doped silica fiber laserin unidirectional pumping mode is presented.An accurate simulation for calculating SBS nonlinearity is performed by considering thecoupled differential rate equations for pump, signal and Stokes powers, as wel...
متن کاملA Non-Demolition Photon Counting Method by Four-Level Inverted Y-Type Atom
The semi-classical model of atom-field interaction has been fully studied for some multilevel atoms, e.g. Vee, L, Cascade X , Y, and inverted Y and so on. This issue is developed into the full-quantum electrodynamics formalism, where the probe and coupling electromagnetic fields are quantized. In this article, we investigate the full-quantum model of absorption and dispersion spectrum of trappe...
متن کامل